cbtop - Compute Block Top
cbtop is a real-time load testing and hardware monitoring TUI built on the Brick Architecture. It provides visibility into CPU, GPU, memory, and compute workloads with a familiar htop-style interface.
Installation
# Build from source
cargo build -p cbtop --release
# Run
./target/release/cbtop
Features
- Real-time Monitoring: CPU, GPU, memory, network, disk, thermal metrics
- Load Generation: SIMD, CUDA, and wgpu compute workloads
- Compute Scoring: BrickScore framework (0-100) with letter grades
- Multi-Backend: Automatic backend selection (AVX2, CUDA, wgpu)
- Deterministic Mode: Reproducible benchmarks for testing
Usage
# Basic monitoring
cbtop
# With load testing
cbtop --load medium --backend simd
# Stress test with CUDA
cbtop --load stress --backend cuda
# Deterministic mode for reproducible results
cbtop --deterministic --show-fps
Command-Line Options
| Option | Description | Default |
|---|---|---|
-r, --refresh <MS> | Refresh rate in milliseconds | 100 |
-d, --device <N> | GPU device index | 0 |
-b, --backend <TYPE> | Backend: simd, wgpu, cuda, all | all |
-l, --load <LEVEL> | Load: idle, light, medium, heavy, stress | idle |
-w, --workload <TYPE> | Workload: gemm, conv, attention, bandwidth | gemm |
-s, --size <N> | Problem size in elements | 1048576 |
--deterministic | Enable deterministic mode | false |
--show-fps | Show frame timing statistics | false |
Keyboard Controls
| Key | Action |
|---|---|
q | Quit |
Tab | Next panel |
Shift+Tab | Previous panel |
1-7 | Jump to panel |
Space | Start/Stop load generator |
↑/↓ | Adjust load intensity |
b | Cycle backend |
w | Cycle workload type |
TUI Layout
┌─────────────────────── cbtop v0.1.0 ───────────────────────┐
│ CPU: AMD Ryzen 9 5950X │ GPU: NVIDIA RTX 3080 │ Mem: 64GB │
├────────────────────────────────────────────────────────────┤
│ [Overview] [CPU] [GPU] [Memory] [Network] [Disk] [Load] │
├──────────────────────┬─────────────────────────────────────┤
│ CPU Usage │ GPU Metrics │
│ ████████░░ 78% │ Util: ███████░░░ 72% │
│ │ Mem: ██████░░░░ 58% (6.2/10.0 GB) │
│ Core 0: ████████ 95% │ Temp: 67°C Power: 285W │
│ Core 1: ██████░░ 72% │ │
├──────────────────────┼─────────────────────────────────────┤
│ Memory │ Load Generator │
│ Used: 24.5/64.0 GB │ Backend: SIMD (AVX2) │
│ ██████░░░░ 38% │ GFLOP/s: 27.76 │
│ │ Score: 85/100 (B+) │
├──────────────────────┴─────────────────────────────────────┤
│ Status: Running │ 27.76 GFLOP/s │ Latency: 2.3ms │ q=quit │
└────────────────────────────────────────────────────────────┘
BrickScore Framework
cbtop uses the ComputeBrick Scoring Framework to evaluate compute quality:
| Component | Weight | Description |
|---|---|---|
| Performance | 40 pts | GFLOP/s vs theoretical peak |
| Efficiency | 25 pts | SIMD/GPU utilization |
| Correctness | 20 pts | Assertion pass rate |
| Stability | 15 pts | Coefficient of Variation |
Grades: A (90-100), B (80-89), C (70-79), D (60-69), F (<60)
Brick Architecture
cbtop is built on the Brick Architecture from presentar-terminal:
Layer 4: Load Generators → SimdLoadBrick, CudaLoadBrick, WgpuLoadBrick
Layer 3: Panels → Overview, CPU, GPU, Memory, Network, Disk, Load
Layer 2: Analyzers → Throughput, Bottleneck, Thermal
Layer 1: Collectors → CPU, GPU, PCIe, Memory, Thermal, ZRAM
Each Brick is a falsifiable unit with:
- Assertions (correctness guarantees)
- Budget (timing constraints)
- Verification (runtime checks)
Integration with Trueno
cbtop uses Trueno's SIMD operations for load generation:
use trueno::Vector;
// cbtop uses Trueno Vector operations for benchmarking
let a = Vector::from_slice(&data_a);
let b = Vector::from_slice(&data_b);
let result = a.dot(&b).unwrap(); // SIMD-accelerated dot product
Headless Mode (AI Agent Integration)
cbtop supports headless mode for CI/CD pipelines and AI agents like Claude Code. This enables programmatic benchmarking without a TTY.
Running Headless Benchmarks
# Basic headless benchmark with JSON output
cbtop --headless --format json --duration 5
# Using the bench subcommand
cbtop bench --backend simd --workload gemm --duration 5 --format json
# Save results to file
cbtop bench --backend simd -o results.json
Example JSON Output
{
"version": "0.1.0",
"timestamp": "2026-01-11T10:00:00Z",
"duration_secs": 5.0,
"system": {
"cpu": "AMD Ryzen Threadripper 7960X",
"cores": 48,
"memory_gb": 128
},
"benchmark": {
"backend": "Simd",
"workload": "Gemm",
"size": 1048576,
"iterations": 500
},
"results": {
"gflops": 25.0,
"throughput_ops_sec": 1000.0,
"latency_ms": {
"mean": 1.0,
"p50": 0.9,
"p95": 1.5,
"p99": 1.8,
"cv_percent": 5.0
}
},
"score": {
"total": 85,
"grade": "B",
"performance": 35,
"efficiency": 20,
"correctness": 20,
"stability": 10
}
}
Regression Testing
Compare against a baseline to detect performance regressions:
# Save baseline
cbtop bench --backend simd -o baseline.json
# Test against baseline (exits non-zero on >5% regression)
cbtop bench --backend simd --baseline baseline.json --fail-on-regression 5.0
Backend Comparison
Compare multiple backends side-by-side:
# Compare SIMD vs all backends
cbtop bench --compare simd,cuda,wgpu --format text
AI Agent Use Cases
AI coding assistants can use cbtop headless mode to:
- Profile before optimization: Run benchmarks before making changes
- Validate improvements: Compare results after optimization
- Detect regressions: Fail CI if performance drops
- Generate reports: Include benchmark data in documentation
Example workflow for an AI agent:
# 1. Baseline measurement
cbtop bench --backend simd -o /tmp/baseline.json
# 2. AI makes code changes...
# 3. Validate no regression
cbtop bench --backend simd --baseline /tmp/baseline.json --fail-on-regression 5.0
Testing
# Run all cbtop tests
cargo test -p cbtop --all-features
# Run falsification tests
cargo test -p cbtop f301
# Run with ignored tests (requires isolated CPU)
cargo test -p cbtop --all-features -- --ignored
PMAT Optimization Modules
cbtop includes advanced optimization modules for production deployments:
Federated Metrics Aggregation (PMAT-048)
CRDT-based multi-host metrics aggregation for distributed monitoring:
use cbtop::{MetricsFederation, FederationConfig, GCounter, LwwRegister, OrSet};
let mut federation = MetricsFederation::new("host-1", FederationConfig::default());
federation.add_host("host-2");
federation.record("cpu_usage", 75.0).unwrap();
// CRDT types for conflict-free replication
let mut counter = GCounter::new();
counter.increment("node-a", 5);
counter.merge(&other_counter); // Automatic conflict resolution
Adaptive ML Thresholds (PMAT-049)
Workload-specific threshold learning with ML-based anomaly detection:
use cbtop::{AdaptiveThresholdMl, MlThresholdConfig, WorkloadClass};
let mut ml = AdaptiveThresholdMl::new(MlThresholdConfig::default());
ml.train(&samples, false).ok();
// Per-workload learned thresholds
let threshold = ml.get_threshold(WorkloadClass::Matmul);
let result = ml.detect_anomaly(&new_samples).unwrap();
Incremental Profile Snapshots (PMAT-050)
Delta-compressed profile storage with keyframe intervals:
use cbtop::{IncrementalSnapshotStore, ProfileSnapshot, SnapshotConfig, SnapshotQuery};
let mut store = IncrementalSnapshotStore::new(SnapshotConfig {
keyframe_interval: 5,
..Default::default()
});
store.append(snapshot).unwrap();
// Query by fingerprint or time range
let results = store.query(&SnapshotQuery::new().fingerprint("workload_0")).unwrap();
println!("Compression ratio: {:.1}%", store.compression_ratio() * 100.0);
Predictive Scheduling Optimizer (PMAT-051)
SLO-aware workload scheduling with cost optimization:
use cbtop::{PredictiveScheduler, HostProfile, InstanceType, SchedulerWorkloadSpec};
let mut scheduler = PredictiveScheduler::new(PredictiveSchedulerConfig::default());
scheduler.register_host(HostProfile::new("h100-1", InstanceType::OnDemand));
let workload = SchedulerWorkloadSpec::new("inference", 1000);
if let Some(decision) = scheduler.schedule(&workload) {
println!("Scheduled to: {}, cost: ${:.4}", decision.host_id, decision.predicted_cost);
}
Running the Examples
cargo run --example federated_metrics_demo -p cbtop
cargo run --example adaptive_ml_demo -p cbtop
cargo run --example incremental_snapshot_demo -p cbtop
cargo run --example predictive_scheduler_demo -p cbtop
BrickProfiler Integration
cbtop integrates with trueno's BrickProfiler for detailed per-brick performance analysis across all backends (CPU/SIMD/GPU).
Backend-Specific Profiling
When profiling is enabled, cbtop displays backend-specific metrics:
┌─────────────────────────── cbtop v0.3.0 ───────────────────────────┐
│ Backend: AVX-512 (Intel Xeon) │
│ Throughput: 8.7 tok/s │
├────────────────────────────────────────────────────────────────────┤
│ Brick │ Time │ Elements │ Throughput │ % Total │
├──────────────────┼─────────┼──────────┼────────────┼──────────────┤
│ QkvProjection │ 45.2ms │ 4096 │ 0.09M/s │ 39.2% │
│ GateProjection │ 38.1ms │ 4096 │ 0.11M/s │ 33.0% │
│ AttentionScore │ 18.5ms │ 4096 │ 0.22M/s │ 16.0% │
│ RmsNorm │ 2.1ms │ 4096 │ 1.95M/s │ 1.8% │
└────────────────────────────────────────────────────────────────────┘
Instrumentation Status
The profiler captures metrics differently based on the inference backend:
| Backend | Path | BrickProfiler | Notes |
|---|---|---|---|
| CUDA | CudaExecutor::forward() | Full | Per-brick timing with deferred sync |
| CPU | forward() | None | Legacy reference implementation |
| CPU | forward_profiled() | Full | Instrumented path (recommended) |
| SIMD | trueno ops | Per-op | Use start_brick()/stop_brick() |
Enabling CPU/SIMD Profiling
To see CPU/SIMD metrics in cbtop, use an instrumented forward path:
use trueno::BrickProfiler;
use realizar::AprModel;
let mut profiler = BrickProfiler::new();
profiler.enable();
// Use instrumented forward instead of legacy forward()
let result = model.forward_profiled(&tokens, &mut profiler)?;
// Export for cbtop visualization
let report = profiler.report();
Backend-Specific Roofline
Different backends have different theoretical peaks for roofline analysis:
| Backend | Peak TFLOPS (FP32) | Memory BW (GB/s) |
|---|---|---|
| RTX 4090 | 83.0 | 1008 |
| AVX-512 | ~2.0 | ~100 |
| AVX2 | ~0.5 | ~50 |
| Scalar | ~0.1 | ~25 |
Use --roofline flag to see how close each brick is to theoretical peak:
cbtop bench --backend simd --roofline
Critical Path Analysis
cbtop can display the critical path through an execution graph:
# Show critical path summary
cbtop --show-critical-path
# Export execution graph for visualization
cbtop bench --export-graph /tmp/graph.dot
dot -Tsvg /tmp/graph.dot -o /tmp/graph.svg
Specification
See the full specification at:
docs/specifications/compute-block-tui-cbtop.mddocs/specifications/ml-tuner-bricks.md(Appendix E.8: Backend-Specific Profiling)
The specification includes:
- 200-point falsification protocol
- 49 peer-reviewed citations
- ComputeBrick Scoring Framework
- FKR (Falsifiable Knowledge Record) entries