Builder Pattern

The Builder Pattern is a creational design pattern that constructs complex objects with many optional parameters. In Rust ML libraries, it's the standard way to create estimators with sensible defaults while allowing customization.

Why Use the Builder Pattern?

Machine learning models have many hyperparameters, most of which have good defaults:

// Without builder: telescoping constructor hell
let model = KMeans::new(
    3,           // n_clusters (required)
    300,         // max_iter
    1e-4,        // tol
    Some(42),    // random_state
);
// Which parameter was which? Hard to remember!

// With builder: clear, self-documenting, extensible
let model = KMeans::new(3)
    .with_max_iter(300)
    .with_tol(1e-4)
    .with_random_state(42);
// Clear intent, sensible defaults for omitted parameters

Benefits:

  1. Sensible defaults: Only specify what differs from defaults
  2. Self-documenting: Method names make intent clear
  3. Extensible: Add new parameters without breaking existing code
  4. Type-safe: Compile-time verification of parameter types
  5. Chainable: Fluent API for configuring complex objects

Implementation Pattern

Basic Structure

pub struct KMeans {
    // Required parameter
    n_clusters: usize,

    // Optional parameters with defaults
    max_iter: usize,
    tol: f32,
    random_state: Option<u64>,

    // State (None until fitted)
    centroids: Option<Matrix<f32>>,
}

impl KMeans {
    /// Creates a new K-Means with required parameters and sensible defaults.
    #[must_use]  // ← CRITICAL: Warn if result is unused
    pub fn new(n_clusters: usize) -> Self {
        Self {
            n_clusters,
            max_iter: 300,          // Default from sklearn
            tol: 1e-4,              // Default from sklearn
            random_state: None,     // Default: non-deterministic
            centroids: None,        // Not fitted yet
        }
    }

    /// Sets the maximum number of iterations.
    #[must_use]  // ← Consuming self, must use return value
    pub fn with_max_iter(mut self, max_iter: usize) -> Self {
        self.max_iter = max_iter;
        self  // Return self for chaining
    }

    /// Sets the convergence tolerance.
    #[must_use]
    pub fn with_tol(mut self, tol: f32) -> Self {
        self.tol = tol;
        self
    }

    /// Sets the random seed for reproducibility.
    #[must_use]
    pub fn with_random_state(mut self, seed: u64) -> Self {
        self.random_state = Some(seed);
        self
    }
}

Key elements:

  • new() takes only required parameters
  • with_*() methods set optional parameters
  • Methods consume self and return Self for chaining
  • #[must_use] attribute warns if result is discarded

Usage

// Use defaults
let mut kmeans = KMeans::new(3);
kmeans.fit(&data)?;

// Customize hyperparameters
let mut kmeans = KMeans::new(3)
    .with_max_iter(500)
    .with_tol(1e-5)
    .with_random_state(42);
kmeans.fit(&data)?;

// Can store builder and modify later
let builder = KMeans::new(3)
    .with_max_iter(500);
// Later...
let mut model = builder.with_random_state(42);
model.fit(&data)?;

Real-World Examples from aprender

Example 1: LogisticRegression

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct LogisticRegression {
    coefficients: Option<Vector<f32>>,
    intercept: f32,
    learning_rate: f32,
    max_iter: usize,
    tol: f32,
}

impl LogisticRegression {
    pub fn new() -> Self {
        Self {
            coefficients: None,
            intercept: 0.0,
            learning_rate: 0.01,    // Default
            max_iter: 1000,         // Default
            tol: 1e-4,              // Default
        }
    }

    pub fn with_learning_rate(mut self, lr: f32) -> Self {
        self.learning_rate = lr;
        self
    }

    pub fn with_max_iter(mut self, max_iter: usize) -> Self {
        self.max_iter = max_iter;
        self
    }

    pub fn with_tolerance(mut self, tol: f32) -> Self {
        self.tol = tol;
        self
    }
}

// Usage
let mut model = LogisticRegression::new()
    .with_learning_rate(0.1)
    .with_max_iter(2000)
    .with_tolerance(1e-6);
model.fit(&x, &y)?;

Location: src/classification/mod.rs:60-96

Example 2: DecisionTreeRegressor with Validation

impl DecisionTreeRegressor {
    pub fn new() -> Self {
        Self {
            tree: None,
            max_depth: None,         // None = unlimited
            min_samples_split: 2,    // Minimum valid value
            min_samples_leaf: 1,     // Minimum valid value
        }
    }

    pub fn with_max_depth(mut self, depth: usize) -> Self {
        self.max_depth = Some(depth);
        self
    }

    /// Sets minimum samples to split (enforces minimum of 2).
    pub fn with_min_samples_split(mut self, min_samples: usize) -> Self {
        self.min_samples_split = min_samples.max(2);  // ← Validation!
        self
    }

    /// Sets minimum samples per leaf (enforces minimum of 1).
    pub fn with_min_samples_leaf(mut self, min_samples: usize) -> Self {
        self.min_samples_leaf = min_samples.max(1);  // ← Validation!
        self
    }
}

// Usage - invalid values are coerced to valid ranges
let tree = DecisionTreeRegressor::new()
    .with_min_samples_split(0);  // Will be coerced to 2

Key insight: Builder methods can validate and coerce parameters to valid ranges.

Location: src/tree/mod.rs:153-192

Example 3: StandardScaler with Boolean Flags

impl StandardScaler {
    #[must_use]
    pub fn new() -> Self {
        Self {
            mean: None,
            std: None,
            with_mean: true,   // Default: center data
            with_std: true,    // Default: scale data
        }
    }

    #[must_use]
    pub fn with_mean(mut self, with_mean: bool) -> Self {
        self.with_mean = with_mean;
        self
    }

    #[must_use]
    pub fn with_std(mut self, with_std: bool) -> Self {
        self.with_std = with_std;
        self
    }
}

// Usage: disable centering but keep scaling
let mut scaler = StandardScaler::new()
    .with_mean(false)
    .with_std(true);
scaler.fit_transform(&data)?;

Location: src/preprocessing/mod.rs:84-111

Example 4: LinearRegression - Minimal Builder

impl LinearRegression {
    #[must_use]
    pub fn new() -> Self {
        Self {
            coefficients: None,
            intercept: 0.0,
            fit_intercept: true,  // Default: fit intercept
        }
    }

    #[must_use]
    pub fn with_intercept(mut self, fit_intercept: bool) -> Self {
        self.fit_intercept = fit_intercept;
        self
    }
}

// Usage
let mut model = LinearRegression::new();              // Use defaults
let mut model = LinearRegression::new()
    .with_intercept(false);                           // No intercept

Key insight: Even models with few parameters benefit from builder pattern for clarity and extensibility.

Location: src/linear_model/mod.rs:70-86

The #[must_use] Attribute

The #[must_use] attribute is CRITICAL for builder methods:

#[must_use]
pub fn with_max_iter(mut self, max_iter: usize) -> Self {
    self.max_iter = max_iter;
    self
}

Why #[must_use] Matters

Without it, this bug compiles silently:

// BUG: Result of with_max_iter() is discarded!
let mut model = KMeans::new(3);
model.with_max_iter(500);  // ← Does NOTHING! Returns modified copy
model.fit(&data)?;         // ← Uses default max_iter=300, not 500

// Correct usage (compiler warns without #[must_use])
let mut model = KMeans::new(3)
    .with_max_iter(500);   // ← Assigns modified copy
model.fit(&data)?;         // ← Uses max_iter=500

Always use #[must_use] on:

  1. new() constructors (warn if unused)
  2. All with_*() builder methods (consuming self)
  3. Methods that return Self without side effects

Anti-Pattern in Codebase

src/classification/mod.rs:80-96 is missing #[must_use]:

// ❌ MISSING #[must_use] - should be fixed
pub fn with_learning_rate(mut self, lr: f32) -> Self {
    self.learning_rate = lr;
    self
}

This allows the silent bug above to compile without warnings.

When to Use vs. Not Use

Use Builder Pattern When:

  1. Many optional parameters (3+ optional parameters)

    KMeans::new(3)
        .with_max_iter(300)
        .with_tol(1e-4)
        .with_random_state(42)
  2. Sensible defaults exist (sklearn conventions)

    // Most users don't need to change max_iter
    KMeans::new(3)  // Uses max_iter=300 by default
  3. Future extensibility (easy to add parameters without breaking API)

    // Later: add with_n_init() without breaking existing code
    KMeans::new(3)
        .with_max_iter(300)
        .with_n_init(10)  // New parameter

Don't Use Builder Pattern When:

  1. All parameters are required (use regular constructor)

    // ✅ Simple constructor - no builder needed
    Matrix::from_vec(rows, cols, data)
  2. Only one or two parameters (constructor is clear enough)

    // ✅ No builder needed
    Vector::from_vec(data)
  3. Configuration is complex (use dedicated config struct)

    // For very complex configuration (10+ parameters)
    struct KMeansConfig { /* ... */ }
    KMeans::from_config(config)

Common Pitfalls

Pitfall 1: Mutable Reference Instead of Consuming Self

// ❌ WRONG: Takes &mut self, breaks chaining
pub fn with_max_iter(&mut self, max_iter: usize) {
    self.max_iter = max_iter;
}

// Can't chain!
let mut model = KMeans::new(3);
model.with_max_iter(500);            // No return value
model.with_tol(1e-4);                // Separate call
model.with_random_state(42);         // Can't chain

// ✅ CORRECT: Consumes self, returns Self
pub fn with_max_iter(mut self, max_iter: usize) -> Self {
    self.max_iter = max_iter;
    self
}

// Can chain!
let mut model = KMeans::new(3)
    .with_max_iter(500)
    .with_tol(1e-4)
    .with_random_state(42);

Pitfall 2: Forgetting to Assign Result

// ❌ BUG: Creates builder but doesn't assign
KMeans::new(3)
    .with_max_iter(500);  // ← Result dropped!

let mut model = ???;  // Where's the model?

// ✅ CORRECT: Assign to variable
let mut model = KMeans::new(3)
    .with_max_iter(500);

Pitfall 3: Modifying After Construction

// ❌ WRONG: Trying to modify after construction
let mut model = KMeans::new(3);
model.with_max_iter(500);  // ← Returns new instance, doesn't modify in place

// ✅ CORRECT: Rebuild with new parameters
let model = KMeans::new(3);
let model = model.with_max_iter(500);  // Reassign

// Or chain at construction:
let mut model = KMeans::new(3)
    .with_max_iter(500);

Pitfall 4: Mixing Mutable and Immutable

// ❌ INCONSISTENT: Don't do this
pub fn new() -> Self { /* ... */ }
pub fn with_max_iter(&mut self, max_iter: usize) { /* ... */ }  // Mutable ref
pub fn with_tol(mut self, tol: f32) -> Self { /* ... */ }       // Consuming

// ✅ CONSISTENT: All builders consume self
pub fn new() -> Self { /* ... */ }
pub fn with_max_iter(mut self, max_iter: usize) -> Self { /* ... */ }
pub fn with_tol(mut self, tol: f32) -> Self { /* ... */ }

Pattern Comparison

Telescoping Constructors

// ❌ Telescoping constructors - hard to read, not extensible
impl KMeans {
    pub fn new(n_clusters: usize) -> Self { /* ... */ }
    pub fn new_with_iter(n_clusters: usize, max_iter: usize) -> Self { /* ... */ }
    pub fn new_with_iter_tol(n_clusters: usize, max_iter: usize, tol: f32) -> Self { /* ... */ }
    pub fn new_with_all(n_clusters: usize, max_iter: usize, tol: f32, seed: u64) -> Self { /* ... */ }
}

// Which constructor do I use?
let model = KMeans::new_with_iter_tol(3, 500, 1e-5);  // But I also want random_state!

Setter Methods (Java-style)

// ❌ Mutable setters - verbose, can't validate state until fit()
impl KMeans {
    pub fn new(n_clusters: usize) -> Self { /* ... */ }
    pub fn set_max_iter(&mut self, max_iter: usize) { /* ... */ }
    pub fn set_tol(&mut self, tol: f32) { /* ... */ }
}

// Verbose, no chaining
let mut model = KMeans::new(3);
model.set_max_iter(500);
model.set_tol(1e-5);
model.set_random_state(42);

Builder Pattern (Rust Idiom)

// ✅ Builder pattern - clear, chainable, extensible
impl KMeans {
    pub fn new(n_clusters: usize) -> Self { /* ... */ }
    pub fn with_max_iter(mut self, max_iter: usize) -> Self { /* ... */ }
    pub fn with_tol(mut self, tol: f32) -> Self { /* ... */ }
    pub fn with_random_state(mut self, seed: u64) -> Self { /* ... */ }
}

// Clear, chainable, self-documenting
let mut model = KMeans::new(3)
    .with_max_iter(500)
    .with_tol(1e-5)
    .with_random_state(42);

Advanced: Typestate Pattern

For compile-time guarantees of correct usage, combine builder with typestate:

// Track whether model is fitted at compile time
pub struct Unfitted;
pub struct Fitted;

pub struct KMeans<State = Unfitted> {
    n_clusters: usize,
    centroids: Option<Matrix<f32>>,
    _state: PhantomData<State>,
}

impl KMeans<Unfitted> {
    pub fn new(n_clusters: usize) -> Self { /* ... */ }

    pub fn fit(self, data: &Matrix<f32>) -> Result<KMeans<Fitted>> {
        // Consumes unfitted model, returns fitted model
    }
}

impl KMeans<Fitted> {
    pub fn predict(&self, data: &Matrix<f32>) -> Vec<usize> {
        // Only available on fitted models
    }
}

// Usage
let model = KMeans::new(3);
// model.predict(&data);  // ← Compile error! Not fitted
let model = model.fit(&train_data)?;
let predictions = model.predict(&test_data);  // ✅ Compiles

Trade-off: More type safety but more complex API. Use only when compile-time guarantees are critical.

Integration with Default Trait

Provide Default implementation when all parameters are optional:

impl Default for KMeans {
    fn default() -> Self {
        Self::new(8)  // sklearn default for n_clusters
    }
}

// Usage
let mut model = KMeans::default()
    .with_max_iter(500);

When to implement Default:

  • All parameters have reasonable defaults (including "required" ones)
  • Default values match sklearn conventions
  • Useful for generic code that needs T: Default

When NOT to implement Default:

  • Some parameters don't have sensible defaults (e.g., n_clusters is somewhat arbitrary)
  • Could mislead users about what values to use

Testing Builder Methods

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_builder_defaults() {
        let model = KMeans::new(3);
        assert_eq!(model.n_clusters, 3);
        assert_eq!(model.max_iter, 300);
        assert_eq!(model.tol, 1e-4);
        assert_eq!(model.random_state, None);
    }

    #[test]
    fn test_builder_chaining() {
        let model = KMeans::new(3)
            .with_max_iter(500)
            .with_tol(1e-5)
            .with_random_state(42);

        assert_eq!(model.max_iter, 500);
        assert_eq!(model.tol, 1e-5);
        assert_eq!(model.random_state, Some(42));
    }

    #[test]
    fn test_builder_validation() {
        let tree = DecisionTreeRegressor::new()
            .with_min_samples_split(0);  // Invalid, should be coerced

        assert_eq!(tree.min_samples_split, 2);  // Coerced to minimum
    }
}

Summary

The Builder Pattern is the standard idiom for configuring ML models in Rust:

Key principles:

  1. new() takes only required parameters with sensible defaults
  2. with_*() methods consume self and return Self for chaining
  3. Always use #[must_use] attribute on builders
  4. Validate parameters in builders when possible
  5. Follow sklearn defaults for ML hyperparameters
  6. Implement Default when all parameters are optional

Why it works:

  • Rust's ownership system makes consuming builders efficient (no copies)
  • Method chaining creates clear, self-documenting configuration
  • Easy to extend without breaking existing code
  • Type system enforces correct usage

Real-world examples:

  • src/cluster/mod.rs:77-112 - KMeans with multiple hyperparameters
  • src/linear_model/mod.rs:70-86 - LinearRegression with minimal builder
  • src/tree/mod.rs:153-192 - DecisionTreeRegressor with validation
  • src/preprocessing/mod.rs:84-111 - StandardScaler with boolean flags

The builder pattern is essential for creating ergonomic, maintainable ML APIs in Rust.