Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Visualization & Apps

The Sovereign AI Stack includes a complete visualization and application layer built on GPU-accelerated primitives. This eliminates the need for Python-based tools like Streamlit, Gradio, or Panel.

Architecture

┌─────────────────────────────────────────────────────────────────┐
│  Presentar (App Framework)                                      │
│  - YAML-driven configuration                                    │
│  - Auto-display for .apr/.ald files                             │
│  - Quality scoring (F-A grade)                                  │
├─────────────────────────────────────────────────────────────────┤
│  Trueno-Viz (GPU Rendering) v0.1.1                              │
│  - WGSL shaders for paths, fills, text                          │
│  - WebGPU + WASM targets                                        │
│  - 60fps rendering pipeline                                     │
├─────────────────────────────────────────────────────────────────┤
│  Trueno (Compute Foundation) v0.7.3                             │
│  - SIMD vectorization                                           │
│  - GPU compute dispatch                                         │
│  - Backend: CPU/WASM/WebGPU                                     │
└─────────────────────────────────────────────────────────────────┘

Components

ComponentVersionPurpose
Trueno-Viz0.1.1GPU rendering primitives (paths, fills, text, charts)
Presentar0.1.0YAML-driven app framework with auto-display

Design Principles

Following the Toyota Way:

  • Muda (Waste Elimination): No Python GIL, no runtime interpretation, no server round-trips
  • Jidoka (Built-in Quality): Compile-time type safety, deterministic rendering
  • Poka-yoke (Mistake Proofing): Schema validation at load time, not runtime

80/20 Rule

The visualization layer follows the stack’s 80/20 principle:

  • 80% Pure Stack: All rendering via Trueno-Viz GPU primitives (WGSL shaders)
  • 20% Minimal External:
    • winit for cross-platform windowing (WASM lacks native window APIs)
    • fontdue for font rasterization (platform-specific font hinting)

Use Cases

  1. Model Dashboards: Display Aprender model performance metrics
  2. Data Exploration: Interactive views of Alimentar datasets
  3. Inference UIs: Real-time prediction interfaces
  4. Quality Reports: TDG score visualization

Further Reading


Navigate: Table of Contents | Foundation Libraries