Parallel Development
This chapter covers strategies for parallel development when working with the Sovereign AI Stack, including distributed computing patterns with repartir.
Overview
Parallel development in the stack operates at multiple levels:
- Code-level parallelism: Rayon, SIMD, GPU compute
- Task-level parallelism: repartir work-stealing scheduler
- Machine-level parallelism: Distributed execution across nodes
- Team-level parallelism: Concurrent development workflows
Code-Level Parallelism
SIMD with Trueno
#![allow(unused)]
fn main() {
use trueno::Vector;
// Automatic SIMD (AVX2/AVX-512/NEON)
let a = Vector::from_slice(&[1.0, 2.0, 3.0, 4.0]);
let b = Vector::from_slice(&[5.0, 6.0, 7.0, 8.0]);
let result = a.add(&b)?; // SIMD-accelerated
}
GPU with wgpu
#![allow(unused)]
fn main() {
use repartir::executor::gpu::GpuExecutor;
let gpu = GpuExecutor::new().await?;
println!("Using: {} ({} compute units)",
gpu.device_name(),
gpu.capacity()
);
}
Task-Level Parallelism
Work-Stealing with repartir
The Blumofe & Leiserson work-stealing algorithm provides efficient load balancing:
#![allow(unused)]
fn main() {
use repartir::{Pool, task::{Task, Backend}};
let pool = Pool::builder()
.cpu_workers(num_cpus::get())
.build()?;
// Tasks automatically distributed across workers
for chunk in data.chunks(1000) {
let task = Task::builder()
.binary("./process")
.arg(format!("--data={:?}", chunk))
.backend(Backend::Cpu)
.build()?;
pool.submit(task).await?;
}
}
Backend Selection Strategy
| Workload Size | Complexity | Recommended Backend |
|---|---|---|
| < 1K elements | Any | Scalar (no overhead) |
| 1K - 100K | Low/Medium | SIMD (trueno) |
| > 100K | High (O(n²)+) | GPU (wgpu) |
| > 10M | Any | Distributed (repartir remote) |
Machine-Level Parallelism
Multi-Node Deployment
┌─────────────────────────────────────────────────────────────┐
│ Coordinator Node │
│ (batuta orchestration) │
├─────────────────────────────────────────────────────────────┤
│ repartir RemoteExecutor │
├───────────────┬───────────────┬───────────────┬─────────────┤
│ Worker 1 │ Worker 2 │ Worker 3 │ Worker N │
│ GPU + CPU │ GPU + CPU │ GPU + CPU │ GPU + CPU │
└───────────────┴───────────────┴───────────────┴─────────────┘
Setting Up Workers
# On each worker node
cargo install repartir --features remote
# Start worker daemon
repartir-worker --bind 0.0.0.0:9000
# With TLS (production)
repartir-worker --bind 0.0.0.0:9443 \
--cert ./certs/server.pem \
--key ./certs/server.key
Coordinator Code
#![allow(unused)]
fn main() {
use repartir::executor::remote::RemoteExecutor;
let workers = vec![
"10.0.0.1:9000",
"10.0.0.2:9000",
"10.0.0.3:9000",
];
let executor = RemoteExecutor::builder()
.add_workers(&workers)
.build()
.await?;
// Tasks distributed automatically
for task in tasks {
let result = executor.execute(task).await?;
}
}
Team-Level Parallelism
Git Workflow for Parallel Development
main ─────────────────────────────────────────────────►
│ │ │
▼ ▼ ▼
feature/ml-model feature/api-v2 feature/gpu-opt
│ │ │
└────────────────────┴────────────────────┘
│
▼
Integration Branch
│
▼
CI/CD Pipeline
│
▼
main
Module Boundaries
Structure code for parallel development:
src/
├── core/ # Stable, shared code
│ ├── types.rs
│ └── traits.rs
├── ml/ # Team A: ML features
│ ├── training.rs
│ └── inference.rs
├── api/ # Team B: API features
│ ├── handlers.rs
│ └── routes.rs
└── compute/ # Team C: Compute optimization
├── simd.rs
└── gpu.rs
Batuta Stack Workflow
# Check component health (parallel-safe)
batuta stack check
# Quality gate before merge
batuta stack gate
# Version status
batuta stack versions
Performance Patterns
Amdahl’s Law Considerations
Speedup = 1 / ((1 - P) + P/N)
Where:
P = Parallel fraction of code
N = Number of processors
| Algorithm | Parallel Fraction | 8-Node Speedup |
|---|---|---|
| Random Forest | 0.95 | 5.9x |
| K-Means | 0.85 | 4.4x |
| Linear Regression | 0.90 | 5.0x |
| Neural Network | 0.92 | 5.4x |
Communication Overhead
Minimize cross-node communication:
#![allow(unused)]
fn main() {
// BAD: Fine-grained tasks (high overhead)
for item in items {
executor.execute(process_one(item)).await?;
}
// GOOD: Coarse-grained tasks (batch processing)
for chunk in items.chunks(10_000) {
executor.execute(process_batch(chunk)).await?;
}
}
Monitoring & Debugging
TUI Dashboard
# Monitor distributed job flow
cargo run --bin job-flow --features tui,remote
Logging
#![allow(unused)]
fn main() {
use tracing::{info, debug, span, Level};
let span = span!(Level::INFO, "distributed_task", node = %node_id);
let _guard = span.enter();
info!("Submitting task to {}", node_id);
debug!("Task payload: {:?}", task);
}
Metrics Collection
#![allow(unused)]
fn main() {
use std::time::Instant;
let start = Instant::now();
let result = executor.execute(task).await?;
let duration = start.elapsed();
metrics::histogram!("task_duration_ms", duration.as_millis() as f64);
metrics::counter!("tasks_completed", 1);
}
Best Practices
1. Profile Before Parallelizing
# Use pmat for analysis
pmat check . --analyze-complexity
# Identify hot paths
cargo flamegraph --root
2. Start with Coarse Granularity
Begin with large tasks, then refine if needed.
3. Handle Failures Gracefully
#![allow(unused)]
fn main() {
match executor.execute(task).await {
Ok(result) if result.is_success() => {
// Process result
}
Ok(result) => {
// Task failed, retry or skip
log::warn!("Task failed: {:?}", result.stderr_str());
}
Err(e) => {
// Network/system error, may retry
log::error!("Execution error: {}", e);
}
}
}
4. Use Checkpointing for Long Jobs
#![allow(unused)]
fn main() {
use repartir::checkpoint::CheckpointManager;
let checkpoint = CheckpointManager::new("./checkpoints")?;
for epoch in start_epoch..total_epochs {
// Train epoch
train_epoch(epoch).await?;
// Checkpoint after each epoch
checkpoint.save(&format!("epoch_{}", epoch), &state).await?;
}
}
Navigate: Table of Contents | Code Review | Knowledge Transfer